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Modal Analysis of Waveguide Antennas With
Arbitrary Cross Sections
Rainer Kühne and Jürgen Marquardt, Member, IEEE

Abstract—An approach is given to analyze the modal coupling
of open-ended waveguides with arbitrary cross sections located in
a conducting screen. The presented theory enables the determina-
tion of reflection characteristics of a single waveguide, as well as
the analysis of mutual coupling between elements in waveguide an-
tenna arrays. The field inside each waveguide is expressed as a sum
of the transverse-electric and transverse-magnetic modes and ex-
pressions for the mutual admittances of modes excited at the aper-
ture are obtained using a direct integration method. From these
expressions, the mode reflection and conversion coefficients are de-
termined. Computed and measured results are presented. Further-
more, this approach has been used to design a new type of horn
antenna with high return loss and equal radiation patterns in the
two principle planes.

Index Terms—Horn antenna array, mutual coupling,
open-ended waveguide.

I. INTRODUCTION

WAVEGUIDES and horns with rectangular, circular, and
elliptical cross sections are widely used as elements for

waveguide antenna arrays. The open end and the mutual cou-
pling do effect the element impedance and the radiation pattern
by causing the complex amplitude of modes to differ from that
of isolated elements. For an accurate prediction of the antenna
or array performance, this modal coupling should be included in
any design procedure. It can be analyzed very accurately using
an integral equation and a Green’s function approach.

In the past, only the cross sections mentioned above were
taken into account to determine the mutual coupling of wave-
guide elements [1]–[3]. This paper deals with a more general
approach for the eigenmodes of the waveguides, which allows
to take into consideration nearly any kind of cross section, e.g., a
square cross section with rounded corners. The main reason for
applying these elements is obvious: if the antenna should consist
of a square waveguide or horn, but should also be milled from
one workpiece with an axially introduced milling tool, certain
roundings will necessarily remain in the corners of the square
cross section. These roundings influence the cutoff frequencies
and field distributions of all modes, which means that they influ-
ence the scattering parameters as well as the beam shape, side-
lobe level, and driving impedance.

II. FORMULATION

Consider the cylindrical waveguides terminating in a
common ground plane illustrated in Fig. 1. The aperture
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Fig. 1. Geometry of cylindrical waveguides opening into a common ground
plane.

field of each waveguide can be approximated as a sum of
modes. In terms of the incident wave

amplitudes at the apertures, the amplitudes of the reflected
waves are , where is the modal
scattering matrix of the complete array environment,is the
unity matrix, and is the admittance matrix; and are the
column vectors of the incident and reflected mode amplitudes.
The elements of represent the mutual admittance of modes
and in apertures and , respectively. They can be calculated
by the formula

(1)

where
wave admittance in the half-space ;

wave admittance of waveguide mode;

wavenumber in the half-space ;

.

This formula is based on the field equivalence principle, the
image theory, and a Galerkin method.and are the per-
mittivity and permeability of the external region, is the an-
gular frequency, and are the transverse and axial mag-
netic fields of mode , is the wavenumber of mode, and

is the scalar Green’s function with
.
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Fig. 2. Cross sections of cylindrical waveguides.

A. Waveguides With Arbitrary Cross Sections

The computation of (1) requires the knowledge of the field
distribution of the eigenmodes of the waveguides. The calcula-
tion of the eigenmodes is based on the expansion of the fields
into basic solutions of the wave equation in polar coordinates
[4]. Therefore, the steady contour of each waveguide has to be
formulated in polar coordinates. This and symmetry to the two
principle planes are the only prerequisites for its cross section.
Thus, it is possible to describe a wide variety of waveguides,
e.g., a rectangular waveguide with rounded corners, illustrated
in Fig. 2(d). The radius of the rounded corners may be very
small (e.g., in order to have a closer look at the deviations from
an ideal rectangular waveguide that have to be expected), but
may also take the maximum size of half the height of the wave-
guide in question. For the special case of a square waveguide,
the last item generates a circular cross section (see Fig. 2(d) with

).
The normalized scalar potentials for each waveguide (infinite

conductivity is considered) have the following form for
(or ) modes

(2)

and for (or ) modes

(3)

Unlike the customary indication of the modes with two index
numbers, only one index number can be given here since there is
not a sole basic function per mode, but instead a infinite number
has to be assumed. That is why the index number also gives no
clear indication of the appropriate field distribution.

With , (2) and (3) satisfy the boundary con-
ditions and can be expressed in rectangular components,
as described in [5] and [6]. is the normalization constant
of mode , are the expansion coefficients, is a Bessel
function of order , and is the cutoff wavenumber of mode

. The polarization angle is defined relative to the initial
line in the local polar-coordinate system ( ) that is parallel to

TABLE I
COMPARISION OFCOMPUTED NORMALIZED CUTOFF WAVENUMBER k b AND

EXACT SOLUTION FORb=a = 1 (FORa; b; c SEEFIG. 1)

the -axis for TE modes and parallel to the-axis for TM modes.
For a numerical computation, it is evident that the considered
sum of the basic solutions of the wave equation in (2) and (3)
has to be limited. As a rule, an upper limit of and

is sufficient to calculate the cutoff wavenumber of
the dominant mode and higher order modes for most waveguide
cross sections, respectively. In Table I, the cutoff wavenumber
of several TE and TM modes for a square waveguide are listed
with the radius of the rounded corners as a parameter. As one
can see, the results for a square and a circular cross section are
in good agreement with the exact solutions. Note that, for a cir-
cular cross section, only one basic solution of the wave equation
has to be considered.

B. Modal Coupling

For modes coupling within the same aperture, it is apparent
from (1) that there is a singularity in the Green’s function that
must be treated very carefully for accurate results. One way of
doing this is to substract the singularity out of the source region
indicated in (4)

(4)

where sqrt is the static field
Green’s function. For evaluating the second integral, it is ef-
ficient to choose polar coordinates () with the origin at the
field point ( ) (see Fig. 3). After changing the variables to

and , the integral can be written
as

(5)

where sqrt
is the corresponding upper limit of the radial integration. Since
the contour of the aperture is known only by a pair of variables
( ), one has to express in terms of and .
This leads to an equation of the form

(6)

which has to be fulfilled by a variation of . During the inte-
gration, this problem occurs once for each integration angle.
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Fig. 3. Coordinate transformation for coincident apertures.

Though this procedure is valid for ( ) inside the whole region
of integration, it is necessary to subdivide this area to achieve
an unambiguous relationship between and . The easiest
way to do this is to deal with one quadrant after the other and to
subdivide each quadrant into the regions defined by the dotted
lines in Fig. 3. Nevertheless, care must be taken of the interde-
pendence of the variables and of the case where the field point
( ) reaches the boundary.

When the two apertures are separate, numerical integration
can be performed without difficulty. However, reduction of the
fourfold integration in (1) to lower orders of integration has not
been proven possible because of the interdependence of the in-
tegral limits and integration variables.

III. RESULTS

The presented approach has been applied to calculate the mis-
match of a single open-ended waveguide (OEW) due to the open
end as well as the mutual coupling between different elements
in waveguide antenna arrays. The computed results for the re-
flection coefficient of a single square waveguide with various
roundings are shown in Fig. 4. The effect of the rounded cor-
ners can easily be seen. Measurements of the mismatch of an
OEW have been performed with a circular (18.6-mm diameter)
and a rectangular waveguide with rounded corners opening into
a conducting screen (see Fig. 5).1 The rectangular waveguide
( mm, mm, mm) was driven by a WR90.
The scattering matrix of the discontinuity was calculated using
a mode-matching technique and was combined with the scat-
tering matrix due to the open end, which was calculated with
the presented theory. A representation of the aperture field with

modes shows excellent agreement with the measured
data in both cases. The reflection coefficient of the rectangular
waveguide with rounded corners is slightly different compared
to a WR90 shown in [6], mostly due to the different cutoff fre-
quency, which is lower for the WR90.

Figs. 6 (using relevant modes) and 7 (using
relevant modes) show the results for the coupling coefficient of
the dominant mode for two waveguides located in the- and

-plane with a spacing and as a parameter, respectively.
As one can see, the radii of the rounded corners do have an in-
fluence on the coupling level. In the case where the two wave-

1Thickness of conducting screen: 6 mm for circular and 14 mm for rectangular
waveguide with rounded corners. To reduce edge diffraction effects, microwave
absorbing material was attached to the edges.

(a)

(b)

Fig. 4. Magnitude and phase of the reflection coefficient of the dominant mode
against normalized frequencykb for b=a = 1.

(a)

(b)

Fig. 5. Mismatch of a circular and rectangular waveguide against frequency.



KÜHNE AND MARQUARDT: MODAL ANALYSIS OF WAVEGUIDE ANTENNAS WITH ARBITRARY CROSS SECTIONS 2155

(a)

(b)

Fig. 6. E- andH-plane coupling of identical waveguides against normalized
frequency.

guides are located in the-plane, the mutual coupling of cir-
cular waveguides is higher than that of square waveguides. In
the -plane case, the result is reversed. It is clearly seen that
the frequency dependence is not only shifted due to the cutoff
frequencies.

Measurements for the coupling coefficient have been per-
formed using the predescribed mechanical arrangement again.
Two open-ended circular waveguides with mm and

were located in the conducting screen with a spacing.
For this purpose, a full two-port calibration was carried out. The
magnitude of the coupling coefficient of the dominant mode is
shown in Fig. 8 and, again, the simulated data correspond very
well with the measurements. The mutual coupling between two
rectangular waveguides with rounded corners is shown in Fig. 9
for -plane dispositions only. As the aperture field distribution
is very similar to a waveguide with sharp corners, the mutual
coupling is only slightly different compared to the case of two
WR90’s (i.e., shown in [6]).

Furthermore, Fig. 10 shows the geometry of a horn antenna,
which consists of threesquarewaveguide segmentswith rounded
corners. An optimization process has been applied to achieve
the following items. The antenna should be millable out of one
piece and should be driven by a square waveguide. The return
loss should be as high as possible and the radiation pattern in
the two principle planes (@10.8 GHz) should be equal. The
antenna itself was calculated using a mode-matching technique
and, for the radiating aperture, the presented theory was applied
and the two scattering matrices were then combined. Fig. 11
show the results of the optimization. The radiation patterns

(a)

(b)

Fig. 7. E- andH-plane coupling of identical waveguides against rotation
angle� at kb = 2:2.

Fig. 8. Mutual coupling of circular waveguides (a = b = c = 9:3 mm).

Fig. 9. Mutual coupling of rectangular waveguides with rounded corners each
driven by a WR90.
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Fig. 10. Geometry of the horn antenna.

Fig. 11. Return loss against frequency and radiation pattern in the two
principle planes (@10.8 GHz) of the horn antenna in Fig. 10 (directivity:
12.5 dBi, maximum cross-polar level:�24.5 dB).

are equal up to 70and the return loss is higher than 30 dB.
A verification with HFSS shows nearly the same results.

IV. CONCLUSION

An analysis of mode coupling in a finite array of waveguides
with arbitrary cross sections opening into a ground plane has
been presented. The approach is also valid for the calculation of
a single OEW. In the case that a horn antenna has to be analyzed,
the feeding structure can be calculated using a mode-matching
technique. For the radiating aperture, the presented theory can
be applied. The two scattering matrixes are then combined to
one overall matrix, which indicates the reflection and, in the
special case of an array analysis, the coupling effects. The pre-
sented approach has been applied to calculate the mismatch of a
single OEW due to the open end, as well as the mutual coupling
between two identical OEWs. Nevertheless, the presented for-

mulation may also be applied to dissimilar apertures and waveg-
uides with different cross sections within the same array. The
theory was verified through several measurements with circular
and rectangular waveguides. Furthermore, the optimized design
of a new type of horn antenna with high return loss and equal
radiation pattern in the two principle planes has been presented.
The primary aim of this analysis is to provide a higher flexibility
in the design process.
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